Multimed Tools Appl CrossMark
DOI 10.1007/s11042-015-3217-x

Accelerated Manhattan hashing via bit-remapping
with location information

Wenshuo Chen! - Guiguang Ding! - Zijia Lin? -
Jisheng Pei?

Received: 20 May 2015 / Revised: 2 December 2015 / Accepted: 29 December 2015
© Springer Science+Business Media New York 2016

Abstract Hashing is a binary-code encoding method which tries to preserve the neigh-
borhood structures in the original feature space, in order to realize efficient approximate
nearest neighbor search in large-scale databases. Existing hashing methods usually adopt
a two-stage strategy (projection stage and quantization stage) to encode data points, and
threshold-based single-bit quantization (SBQ) is used to binarize each projected dimension
into 0 or 1. Data similarity between hash codes is measured by their Hamming distance.
However, SBQ may destroy the original neighborhood structures by quantizing neighboring
points near threshold into different binary values. Double-bit quantization (DBQ) and its
derivative, Manhattan hashing, have been proposed to fix this problem. Experimental results
showed that Manhattan hashing outperformed state-of-the-art methods in terms of effective-
ness, but lost the advantage of efficiency because it used decimal arithmetic instead of fast
bitwise operations for similarity measurement between hash codes. In this paper, we pro-
pose an accelerated strategy of Manhattan hashing by making full use of bitwise operations.
Our main contributions are: 1) a new encoding method which assigns location information
to each binary digit is proposed to avoid the time-consuming decimal arithmetic; 2) a novel
hash code distance measurement that accelerates the calculation of Manhattan distance is
proposed to improve query efficiency. Extensive experiments on three benchmark datasets

P< Guiguang Ding
dinggg @tsinghua.edu.cn

Wenshuo Chen
cws13@mails.tsinghua.edu.cn

Zijia Lin
linzijiaO7 @tsinghua.org.cn

Jisheng Pei
pjs07 @mails.tsinghua.edu.cn

School of Software, Tsinghua University, Beijing, 100084, China

Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Published online: 16 January 2016 &\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11042-015-3217-x-x&domain=pdf
mailto:dinggg@tsinghua.edu.cn
mailto:cws13@mails.tsinghua.edu.cn
mailto:linzijia07@tsinghua.org.cn
mailto:pjs07@mails.tsinghua.edu.cn

Multimed Tools Appl

show that our approach improves the speed of data querying on 2-bit, 3-bit and 4-bit quan-
tized hash codes by at least one order of magnitude on average, without any precision
loss.

Keywords Accelerated Manhattan hashing - Bit-remapping - Multiple-bit quantization -
Manhattan distance

1 Introduction

In recent years, there has been an increasing growth of a large variety of data on the Inter-
net, such as image [17], video [25], and text [28], which has brought great challenges for
machine learning and related fields such as information retrieval and data mining. This
has led much attention to the research on similarity search, particularly nearest neighbor
(NN) search, in massive databases [3, 5, 8, 26]. However, the traditional brute-force NN
search strategy is too time-consuming and space-consuming to be used in real-world appli-
cations. Thus researchers proposed to use hashing techniques for efficient approximate
nearest neighbor (ANN) search, which sacrifice query accuracy moderately in exchange for
dramatic boost of query speed. Hashing methods are to learn binary-code representations of
data points with the principle of preserving neighborhood structures in the original feature
space. To be more specific, the original feature points will be encoded into compactly-stored
binary strings, and the mapped binary strings of similar points in the original feature space
should be close to each other in the Hamming space. Furthermore, hashing methods store
binary-code data compactly with hardware bits, requiring much less RAM when perform-
ing ANN, and calculate Hamming distances between data points using fast bitwise XOR
and bit-count! operations which drastically boost the query speed.

Analysis on existing hashing methods indicates that it is an NP hard problem to directly
compute the best binary codes for a given dataset [29]. Hence, nearly all previous hashing
methods adopt a two-stage strategy to encode data points, i.e. a projection stage and a quan-
tization stage. In the former stage, data points are projected from the original n-dimensional
feature space to d-dimensional space. In the latter stage, the projected vectors are quantized
into binary strings with length of c. Currently, the majority of the existing hashing meth-
ods use threshold-based single-bit quantization (SBQ) to binarize each projected dimension
into 0 or 1, as illustrated in Fig. 1a. Although the SBQ strategy is widely adopted, the
inevitable quantization loss introduced by the selection of threshold will violate the principle
of hashing which is data similarity-preserving. In practice, threshold of a certain projected
dimension is usually set as the mean value or the median value of the projected values on
this dimension. However, statistics show that both kinds of threshold values generally lie in
the region of the highest point density, as revealed in [14], and thus a large number of neigh-
boring points near a threshold may be mapped into different bits (such as point p; in region
B and point p3 in region C in Fig. 1), which is surely a breach of the intention to preserve
the neighborhood structures of the original feature space.

As far as we know, hierarchical quantization [19] is the first proposed non-SBQ quanti-
zation method. The authors found that, there is always a possibility that neighboring points
close to the threshold are hashed to different bits (e.g. p» and p3 in Fig. 1). To correct this

IThe method bit-count(n) counts the number of *1” bits in the binary representation of 1z, which is also known
as the calculation of n’s Hamming weight.

@ Springer



Multimed Tools Appl

A B C D
————————— -ep———f——prefopr—fprefm-
@ | 0 [ 1 |
® [ ot [ o0 | 10 [ 11 |
© | 01 | 00 \ 10 |
@ [ o0 [ o [ 10 [ 11 |

Fig. 1 Different encoding methods of four quantization strategies: a single-bit quantization (SBQ); b
hierarchical quantization; ¢ double-bit quantization (DBQ); d 2-bit Manhattan hashing

error, hierarchical quantization divides each dimension into four regions and uses two bits
to encode each region as illustrated in Fig. 1b (which by coincidence is the same as our
proposed 2-bit quantization encoding method). It is true that hierarchical quantization nar-
rows the distances between point pairs like p; and p3 (namely dj (p2, p3)) to 1, but it also
results in dp(p1, p4) = 1 due to the use of Hamming distance. Furthermore, we can get
dn(p1, p3) = dn(p2, pa) = 2 which is unreasonable because dj (p1, pa) < dnp(p1, p3) in
this case, so the destruction of neighborhood structure of data is still not well handled.

Recent researches suggest that the adoption of double-bit quantization (DBQ) [14] strat-
egy is a feasible solution to tackle the weak points of SBQ and hierarchical quantization.
The basic idea of DBQ is to quantize each projected dimension into double bits with adap-
tively learned thresholds that divide the real-valued axis into three regions. It is proposed
to preserve the neighboring structures by omitting the ‘11’ code for encoding, as shown
in Fig. 1c, and Hamming distance is used as distance measurement. Experiments in [14]
showed that DBQ outperforms SBQ significantly.

Manhattan hashing [15] is an updated version of DBQ. It uses Manhattan distance to
replace Hamming distance for the calculation of data similarities in the Hamming space,
which leads to further improvement in query precision. As shown in Fig. 1d, 2-bit Manhat-
tan quantization divides each dimension into four sections, encoding each section with the
binary representation of its index. As a consequence, it must turn the 2-bit quantized binary
codes into decimal values first to calculate the Manhattan distances. The value scope of 2-bit
Manhattan distance is {0, 1, 2, 3}, while the range of Hamming distance is {0, 1, 2} in which
value 3 cannot be covered. Furthermore, 2-bit quantization can be easily expanded to 3-bit
and 4-bit [15], which leads to an even wider scope of distances and further improvement in
query precision. Hence, Manhattan distance is more powerful than Hamming distance when
it comes to the preservation of the original neighborhood structures. However, Manhat-
tan distance measurement loses the advantage of efficiency which is the highlight of using
hashing methods to do ANN search, for decimal operations are much slower than bitwise
operations.

Motivated by the demand to speed up Manhattan hashing, we propose a new encoding
method for quantization and an accelerated Manhattan distance measurement. The whole
solution is referred as accelerated Manhattan hashing (AMH). First, essential changes in
terms of code mapping are made to encode the projected values in a way that is differ-
ent from the original Manhattan hashing. To be more specific, some location information
is assigned to each digit of the g-bit quantized binary codes and a hierarchical mapping
method is used rather than directly encoding each cluster with its index. We refer to this
process as “bit-remapping”. The word “remapping” is used here to indicate that the accel-
erated Manhattan hashing uses the same set of codes with the original Manhattan hashing
while adopting a different bijection. Next, with the help of our bit-remapping strategy, we

@ Springer



Multimed Tools Appl

propose a divide-and-conquer type of distance measure function which reduces the query
time drastically by making full use of bitwise operations instead of decimal arithmetic. Our
“bit-remapping” method and the distance measure function guarantee that we get exactly
the same query result as Manhattan hashing at much faster speed, because we calculate the
Manhattan distance in a different and improved way that will accelerate the calculation.
Thus, accelerated Manhattan hashing tackles the original Manhattan distance efficiency
problem without any loss of query precision.

The rest of the paper is organized as follows. In Section 2, we introduce the previ-
ous related work. Section 3 describes the new bit-remapping encoding method. Then the
accelerated distance measure algorithm is introduced in Section 4. Section 5 reports the
experimental results. Finally, we conclude the whole paper in Section 6.

2 Previous work

Thanks to the unremitting effort put by researchers in this field in the past few decades,
existing hashing methods have already shown extraordinary query speed, powerful capabil-
ity of storage space compression and promising performance in terms of query precision.
As a result, various hashing methods [2, 4, 22, 25, 31-35] have been widely used in a vari-
ety of ANN applications, such as audio retrieval, content-based image retrieval (CBIR), and
video retrieval.

As stated before, the general process of nearly all hashing methods is a two-stage
strategy: projection stage and quantization stage. Figure 2 illustrates this encoding process.

2.1 Projection stage

The goal of hashing is to encode an n-dimensional data point with a binary string of ¢ bits.
To do that we first need to project the n-dimensional data point into d-dimensional. If SBQ

Dataset
Training set

[ Random sampling > [j

[0.3, 0.6, = 0.5
[0.3, 0. 0.

3, 0.
[0.5, 0.1,

[-0.5, 0.7, ==, 0.
[0.6, 0.3, -,

Projection Stage Train Quantization Stage
Data-dependent Projected Vectors Mu“i‘_’lej_’it Binary Codes
PCA-hashing [0.14, -, ~0.9] quantization 01001001. ... 011010
ITQ_haShing 0. DBQ 01101010. .. 010110
S = o oy |
A i gl
Data—independent z€RY {0,1}
LSH Single-bit
SIKH quantization
\ J

Fig. 2 Tllustration of the two-stage general process of hashing methods. For data-dependent projection meth-
ods and multiple-bit quantization methods, randomly sampled training set is provided to compute relevant
parameters and thresholds

@ Springer



Multimed Tools Appl

is used, we’ll have d = c¢. This process is denoted as the “projection stage” in hashing, as
illustrated in Fig. 2.

Since most of the existing hashing methods focus on the projection stage, here
we categorize them as “projection methods”. Generally, these methods can be divided
into two categories: data-independent and data-dependent. Locality-sensitive hashing
(LSH) [1, 6, 9] and its extensions are typical data-independent methods. They simply
adopt random projections that are independent of the training data to encode original
data points. Shift-invariant kernel hashing [24] extends the original LSH by apply-
ing a shifted cosine function to generate hash values. Although the theory of data-
independent methods is simple, the resulting hash codes need to be sufficiently long to
preserve neighborhood structures in the original feature space. As a consequence, data-
independent methods usually need longer hash codes to encode the data than data-dependent
methods to achieve comparable performance, costing more storage space and query
time.

Data-dependent methods, on the other hand, learn better hashing functions from training
data through machine learning techniques, striving to enhance their ability of neighborhood
structures preservation with as short hash codes as possible. PCA-Hash [7, 13] performs
principal component analysis [30] on raw data and then quantizes the projected dimensions
into binary hash codes. Spectral hashing (SH) [29] learns hash functions using spectral
graph partitioning strategy, in which the graph is constructed with data points and their sim-
ilarities. Iterative Quantization (ITQ) [7] works in an alternating minimization scheme for
finding a rotation of zero-centered data so as to minimize the quantization loss of map-
ping the data to a binary hypercube. Both unsupervised data embeddings such as PCA
and supervised embeddings such as canonical correlation analysis (CCA) can be used as
its preliminary step to get the projected vectors. Experiments showed that ITQ achieves
state-of-the-art ANN performance among hashing methods. There are still a lot of other
researches on hashing like Semi-supervised hashing (SSH) [27], Minimal loss hashing
(MLH) [23], Cross-view hashing [18], etc.

2.2 Quantization stage

Quantization stage is to binarize the projected d-dimensional value vector into binary string
of ¢ bits. SBQ quantizes each projected value into O or 1 by thresholding, so ¢ = d in this
case. But if multi-bit quantization is used, each projected value will be quantized into a g-bit
(g may be variable) binary code, and thus we’ll have ¢ > d.

Quantization stage is relatively less researched compared to the projection stage, but
the authors of [15] found that these two stages are of equal importance. Besides the previ-
ously introduced Hierarchical hashing [19], DBQ [14] and Manhattan hashing [15], there
has been some other quantization method proposed in recent years. Variable bit quanti-
sation (VBQ) [21] provides a data-driven non-uniform bit allocation across hyperplanes.
It optimally allocates a variable number of bits per LSH hyperplane because a subset of
hyperplanes may be more informative than others. Neighbourhood preserving quantisation
(NPQ) [20] is similar to VBQ except that it allocates equal number of bits to each LSH
hyperplane. Quadra-Embedding hashing [16] adopts the same encoding method of Hierar-
chical hashing, i.e. assigning two bits for each projection to define four quantization regions.
And to fix the problem of directly using Hamming distance in [19], the authors of [16]
defined a novel binary code distance function tailored to their method which combines the
use of bitwise operations and decimal operations. However, this method only works in 2-bit
quantization.

@ Springer



Multimed Tools Appl

As a scalable and flexible method, Manhattan hashing [15] achieves an outstanding per-
formance in query precision among all hash-based quantization methods, but it loses the
advantage of query efficiency. In this paper, we propose a whole quantization solution
including bit-remapping and accelerated Manhattan distance measurement, in order to fix
the efficiency problem of Manhattan hashing.

3 Encoding method for accelerated Manhattan hashing

Given a data point x € R", the goal of hashing is to learn a hash function to encode it into a
binary string {0, 1}¢, namely a mapping that is from the original n—dimensional real-valued
space to the c—dimensional Hamming space.

In the case of traditional single-bit quantization, hash functions are in need to generate
an intermediate c—dimensional real-valued vector z for each point in the projection stage.
Then in the quantization stage, the projected vector z is encoded into a binary string y by
thresholding. For example, if the threshold of the kth projected dimension is 6, an encoding
function sgn(zx) is adopted where sgn(zx) = 1 if zx > 6 and 0 otherwise.

In the case of multi-bit quantization, new encoding methods will be needed to binarize
each projected dimension. For example, g-bit Manhattan hashing [15] uses k-means clus-
tering algorithm to cluster the real values of each projected dimension into 29 clusters,
and the midpoints of the line joining neighboring cluster centers will be used as thresh-
olds. Then it uses a g-bit binary code to encode the index of each cluster. Figure 3a, ¢ and
e illustrate respectively the detailed encoding results of 2-bit, 3-bit and 4-bit Manhattan
hashing.

In this paper, we aim to bridge the efficiency gap between the original Hamming
distance and the Manhattan distance calculation. As mentioned above, g-bit Manhattan
hashing encodes each projected real-valued dimension with g binary digits, so we need
a d-dimensional real-valued projected vector to form a binary string of length ¢, where
¢ = d x q. The problem w.r.t. Manhattan distance calculation is that it needs to convert each
g-bit binary code into a decimal number first, and then performs “+” operation d — 1 times
and “—” operation d times to get the final result [15]. Evidently, d increases linearly with
hash code length c, and so do the frequencies of binary-to-decimal conversion and “+/—"
operations. For example, for 2-bit Manhattan hashing (¢ = 2) with hash code length of 256

A B C D
ffffffff fepy- o ppe - Fopy o ppe ]
@ | 00 01 10 11 \
® | 01 00 10 11 \
|

(c) ‘ 000 001 010 011 100 101 110 111
) ‘ 011 010 000 001 101 100 110 111 ‘
(e) [0000 0001 [oo10[ 0011 fo100]0101 fo110]0111f1000] 1001 | 1010[ 1011 1100 1301 | 1110 1111

() [o111]o110 01000101 Joo01 [0000 0010 0011|1011 [1010] 1000] 1001 | 1101 [ 1100] 1110] 1111 ]

0311 921 0312 01 0321 922 0322
Fig. 3 Different encoding methods of Manhattan hashing and accelerated Manhattan hashing: a 2-bit Man-

hattan hashing; b 2-bit accelerated Manhattan hashing; ¢ 3-bit Manhattan hashing; d 3-bit accelerated
Manhattan hashing; e 4-bit Manhattan hashing; f 4-bit accelerated Manhattan hashing

@ Springer



Multimed Tools Appl

(c = 256, d = 128), Manhattan distance measurement ought to perform binary-to-decimal
conversion 128 times first, then “4” operation 127 times and “—” operation 128 times.
Compared with Hamming distance measurement in which only bitwise XOR is performed,
Manhattan hashing loses the advantage of efficiency which is the core value of hashing
methods, because it uses decimal operations too many times.

In order to tackle this problem, we consider replacing the time-consuming decimal arith-
metic with bitwise operations when calculating Manhattan distance. First, we need to avoid
the binary-to-decimal conversion which involves breaking the compactly stored hash codes
into g-bit-length pieces. This problem is mainly caused by simply encoding each projected
value using the binary representation of its k-means cluster’s index as in Fig. 3a, c and e.
Hence, we propose a new encoding method which encodes the projected values in a different
way by bit-remapping. To be specific, we assign some location information (or hierarchical
sign) to each single bit of the g-bit codes, so that all the ith bits of the projected values can
be considered on the same encoding level as a whole. Second, Manhattan distance between
the newly encoded hash codes must be calculated correctly using as few “+/—"" operations
as possible. With the help of our new encoding method, we propose an accelerated Manhat-
tan distance measure function through a divide-and-conquer approach in which the number
of decimal arithmetic is linear to the quantization factor g rather than the code length c.
Generally, ¢ is much greater than ¢, which makes our approach more efficient than the orig-
inal Manhattan hashing. Take the example of 2-bit quantized Manhattan hashing with hash
code length of 256 again, our proposed accelerated Manhattan hashing performs “4” one
time and “—” one time (will be explained later in Section 4.1), which will solve the effi-
ciency problem brought by Manhattan hashing while keeping the same distance measure
results.

3.1 2-bit quantization

To simplify the explanation of our encoding process for general g-bit quantization, 2-bit
quantization will be introduced first as an example, and then the g-bit encoding can be easily
deduced from the simple 2-bit encoding. The encoding process of 2-bit quantization goes
as follows:

1. Given the projected values (denoted as zx) of a certain dimension, we divide their value
scope into four sections as Fig. 3b by k-means like the original Manhattan hashing does,
which is explained before.

2. K-means algorithm with 4 clusters (k = 4) will generate 3 thresholds (thresholds 6,
621 and 6; in Fig. 3) to divide the value scope. The reason we denote the threshold in
the middle as 6 is that, it can be seen as the one which does the first division on the
first Hierarchical level, similar as in Hierarchical hashing [19]. For zx < 61, namely the
value lies in left of 0y, the first bit of z; is set as 0, and 1 otherwise.

3. The other two thresholds are denoted as 61 and 6,,, because they both do the sec-
ond division after 8; and they lie respectively on the left and right of 6;. They can
be seen as the second-layer thresholds. For 61 < zx < 6, namely the value lies
between the two second-layer thresholds, the second bit of zx is set as 0, and 1
otherwise.

Notice that it is the bit-remapping on the second layer that distinguishes our 2-bit encod-
ing method from the original 2-bit Manhattan hashing, for we use location information to
decide the second bit, while Manhattan hashing only uses the binary form of some decimal

@ Springer



Multimed Tools Appl

value. Using our 2-bit encoding method, the second bit of each cluster in Fig. 3b is in turn
encoded into 1, 0, 0 and 1, where clusters near 0; is set to be 0 and clusters far from 6; is set
to be 1. The motivation of proposing this bit-remapping rule is to remove the decimal infor-
mation from the g-bit code and replace it with location information (close to or far from
01), in order to realize the Manhattan distance calculation using fast bitwise operations on
compactly stored binary codes without breaking them into g-bit length of pieces. By this
encoding method, the region pairs A/D and B/C in Fig. 3 can be easily separated, which is
the basis of our accelerated Manhattan distance measurement. Detailed explanations will be
given later in Section 4.1.

3.2 q-bit quantization

As can be seen in Fig. 3d, the encoding rule of 3-bit quantization is an extension to the 2-bit
quantization. The first bit and second bit of a 3-bit quantized code is encoded using the 2-bit
encoding rule. The third-layer thresholds (6311, 6312, 6321 and 6327 in Fig. 3) further divide
each second-layer cluster into two third-layer clusters. By ignoring the first bit, encoding
either side of 0; is reduced to the 2-bit quantization problem, so that the “1,0,0,1” mapping
can be used to encode the third bit.

Hence, the encoding rule of g-bit quantization can be easily deduced from (¢ — 1)-bit
quantization. The ith bit (i > 1) of a g-bit quantized code represents whether the projected
value z; lies between two ith-layer thresholds (namely set as 0) or otherwise (namely set as
1). Following this encoding rule, the details about the bit-mapping result of 3-bit and 4-bit
quantizations is shown in Fig. 3d and f. Formal description of the g-bit encoding process
can be found in Algorithm 1.

As explained before, the original Manhattan hashing involves breaking the compactly
stored binary strings into g-bit length of pieces and performing “+/—"" operations on them.
Mostly, the quantization factor ¢ is set to be a small value (2 < g < 4), but code length c is
usually large (128, 256 or more). Decimal arithmetic is unavoidable when calculating Man-
hattan distance, but the measure method [15] adopts causes the query time to climb with
the growing code length c. However, in our encoding method each ith bit of all projected
values tells some hierarchical information on the same level, so they can be considered as
a whole rather than single binary digits which only make sense in the context of arithmetic
representation. In this way, when calculating Manhattan distance based our bit-mapping
rule, a binary string is broken into g pieces, each with the length of the projected dimension
d (¢ = d x q), which makes the query complexity linear to ¢ rather than d in Manhattan
hashing. This feature brings convenience and efficiency when calculating Manhattan dis-
tance, which will be illustrated later in Section 4. To use this advantage, our method stores
all ith bits of the values of a projected vector together, unlike Manhattan hashing which
stores each g-bit code consecutively. Specifically, the ith part of a c-dimensional binary
string are all the ith bits of the vector. Figure 4 gives an example on how Manhattan hashing
and accelerated Manhattan hashing store their codes respectively. In Fig. 4, Let’s assume
that z; and z; both lie in the first clusters of their own dimensions, and z3 and z4 lie in the
third clusters. With the bit-mapping rule of Manhattan hashing in (a), both z; and z; are
mapped into the code “00”, and z3 and z4 mapped into “10”. Thus we get the binary string
“00001010” for Manhattan hashing. By using the accelerated Manhattan hashing method of
(b), z1 and z are mapped into “01” and z3 and z4 mapped into “10”, as can be seen in Fig. 4.
Since accelerated Manhattan hashing puts all the ith bit of each ¢-bit code together, we get
the binary string “00111100” for accelerated Manhattan hashing. Please refer to Fig. 4 for
details.

@ Springer



Multimed Tools Appl

Algorithm 1 describes formally the encoding method of g-bit quantization in our accel-
erated Manhattan hashing. Note that for input requirement, we use cluster center vector
instead of threshold vector, because they are equivalent and the former can simplify the cal-
culation. To help readers get a grasp of the encoding process, we define a recursive method
here to simplify the illustration, while in reality this algorithm is implemented differently
in a iterative form. In the algorithm, the statement bit = [1,0, 0, 1] in line 1 defines the
newly proposed bit-remapping rule. Then it finds out which cluster the value z; is in (line
2). When [/ = 1, Line 3-8 decide the binary value of its 1st bit. For the cases of / = 2 to ¢,
the first / — 1 bits is encoded first by calling this method recursively on / — 1 layer (line 10),
then encode the /th layer bit using our proposed bit-remapping rule (line 11).

Algorithm 1 Encode(z;, ¢, 7, [): encoding method of accelerated Manhattan hashing

Input:

1. The ith projected value z; from the projected vector z = [z1, 22, ..., z4] of the
original data point after projection stage;

2. The quantization factor ¢ to quantize z; into a g-bit binary code;

3. The cluster center vector t trained using k-means. Each element 7; in T represents
the ith cluster center of current dimension through all training data.

4. The hierarchical level / indicating which encoding layer this method is currently on.
This method is always called as Encode(z;, ¢, T, ¢) from outside, for the encoding
process starts from the bottom layer.

Output:
The output binary string [x, x2, ..., x!]. It only outputs the complete g-bit hash code
of z; when [ = ¢, otherwise the output binary code will be an intermediate result of the
recursive process.

1. bit =[1,0,0,1];

: index = min(abs(z; — 1)); // min(a) returns the index of the minimum value in a,

which indicates the k-means cluster the value z; is in.
. if [ is 1 then
1fmdex is less than then

=0;// zndex < % means that z; lies left to the threshold 6 in Fig. 3.

N8}

else
xi' =1;//index > % means that z; lies right to the threshold 0; in Fig. 3.
end if

R A

. else
10: [xil, xiz, s xffl] = Encode(z;, g, t,1 — 1); // Encode the first [ — 1 bits first.

11: xl = bit [@%4] // ”z’fef‘ gets the cluster index on /th quantization layer, and by

’”d” %4 we get the location of z; in our bit-remapping strategy [1, 0, 0, 1] as explained
before in Section 3.2.
12: end if

4 Accelerated Manhattan distance measurement

In the original Manhattan hashing proposed in [15], a projected d-dimensional real-valued
vector is binarized into a c-dimensional binary string by quantizing each projected value

@ Springer



Multimed Tools Appl

Manhattan hashing 0|0
@|oo]o1][10][11] = [o]o D
e — 7 . 10 7
! - 1]0
Zp ‘*:gdzz-— ----- e
zz | zz | ———
0]1
Zg | Zy | ol1 3
® [o1]oo[10]11] = [1]0 0011 | 1100
Accelerated Manhattan hashing 110
[

Fig. 4 For 2-bit quantization (¢ = 2) with code length 8 (¢ = 8), there are four projected dimensions (d =
4), z1, 22, z3 and z4. Manhattan hashing stores each g-bit code consecutively, while accelerated Manhattan
hashing puts all the ith bit of each g-bit code together. Binary string with the same background color means
that these bits are stored compactly together and considered as a whole when measuring Manhattan distance.
For ease of understanding, this picture is better to be seen in color mode

into a g-bit binary code, where ¢ = d x ¢. To calculate the Manhattan distance between
two binary strings, we must break them into g-bit length of codes first. Formally, let x =
[x1,x2,...,x4] and y = [y1, ¥2, ..., Ya] be two g-bit quantized binary strings. Here x;
denotes the ith g-bit code of x and d is the number of dimensions of the projected vectors.
The Manhattan distance between x and y is defined as

d
dn(x,y) =Y |xi = yil e
i=1

Although the decimal distance measurement in Formula (1) is powerful if query precision
is the only consideration, it is much more time-consuming compared with Hamming dis-
tance measurement. Detailed analyses of the drawbacks of Formula (1) can be found in
Section 3.

With the previously introduced encoding method, we can now measure the Manhattan
distances between a query hash code and hash codes in the database using as few decimal
arithmetic as possible. With the help of our bit-remapping encoding method, we propose
a new Manhattan distance measurement which makes full use of bit operations rather than
decimal arithmetic. Accelerated Manhattan hashing retains the advantage in query precision
of the original Manhattan hashing because it gets exactly the same result with Manhattan
hashing, while it runs much faster.

Letx = [x!,x%,...,x9 and y = [y, y2, ..., y9] be two g-bit quantized binary strings
to be compared, where xl = [x’l', xé, R x(’;l] stands for the set of all the ith bits of the values
in a projected vector. For 2-bit quantized accelerated Manhattan hashing, x = [x!, x?] and
y = [yl y2]. If the total code length ¢ of x is 256, then the length of x! and x2 is 128
respectively, equal to the number of projected dimensions. Here we denote the Manhattan
distance between two g-bit quantized binary strings as M(q, X, y). If 1-bit quantization
(SBQ) is adopted, we can get M(1,x,y) = p(x @ y) in which @ is the bitwise XOR
operation and p(-) is the bit-count operation.

Before the detailed description of 2-bit quantization Manhattan distance measurement,
three notions concerning relative positions of projected values must be explained first, i.e.
“near-end”, “far-end” and “same-end”. For two g-bit quantized codes of the same dimension

@ Springer



Multimed Tools Appl

from different projected vectors, e.g. x; and y; in Formula (1), the above notions denotes
which ends of the (¢ — 1)-bit regions these two codes are in and their relations. Figuratively,
the gth-layer thresholds divide each (¢ — 1)-bit cluster into two smaller clusters. For exam-
ple, Fig. Sa shows the 2-bit encoding result, and with four third-layer thresholds (the four
thinner lines in Fig. 5b), each 2-bit cluster is divided into two 3-bit clusters. The notions
“near-end”, “far-end” and “same-end” denote the relative location relationship between two
3-bit clusters from two different 2-bit clusters that generate them. For example, the 2-bit
region “01” is divided into “011” and “010”, and “10” is divided into “101” and “100”, as
shown in Fig. 5c. Among the four pairs of 3-bit clusters from different 2-bit regions, dis-
tance between “010” and “101” is 3, which is the smallest, so they are on the “near-end” to
each other. Likewise, distance between “011” and “100” is 5 which is the largest, so their
relationship is called “far-end”. As for the other two pairs, 011, 101 and 010, 100, the dis-
tances are both 4, which make them “same-end”. Every pair of 3-bit clusters generated from
different 2-bit regions has similar location relationship, and for clarity we only show some
of them in Fig. 5. These notions are very important in the deduction process of the following
2-bit and general g-bit quantization distance measurement.

4.1 2-bit quantization measurement

As shown in Fig. 3b, 2-bit quantization extends the Manhattan distance value scope from
{0, 1} of 1-bit quantization to {0, 1, 2, 3} by making a further bisection on both sides of 8;
in Fig. 3. The basic distance between regions ‘0Ox’ and ‘ly’ (x and y stand for the newly
added bit) is extended from 1 to 2, which can be denoted as 2M (1, x!, yl) = 2p(x1 ® yl),
because after the 1-bit to 2-bit splitting both sides of ; are split into 2 regions, generating
twice clusters to each projected dimension. It is obvious in Fig. 3b that distance between
‘01’ and ‘11’ is 3 and distance between ‘00’ and ‘10’ is 1 (readers can simply count the

@ | 01 | 00 | 10 | 11 |
near-end same-end

® | | | | | | | | |
far-end same-end

o1t 010 ] 000 001 ] 101 100 | 110 111 |

© | 000 | 001 |

011 010 000 001 101 100 110 111
Lot 010 | 000 001 ] 101 100 | 110 111 |

@ | 000 | 001 |

011 010 000 001 101 100 110 111

011 010 000 001 101 100 110 111
011 010 000 001 101 100 110 111

(e)

Fig. 5 a 2-bit encoding result; b illustration of the notions “near-end”, “far-end” and “same-end” on 3-
bit quantization; ¢ examples of “near-end”: clusters with green background is on “near-end” to “010”; d
examples of “far-end”: clusters with purple background is on “far-end” to “011’; e examples of “same-end”:
clusters with blue background is on “same-end” to each other. For ease of understanding, this picture is better
to be seen in color mode

@ Springer



Multimed Tools Appl

distance between clusters in Fig. 3b). Our algorithm, however, calculates the Manhattan
distance by making some adjustment to the basic extended distance based on the value of
the newly added bits ‘x’ and ‘y’. But no matter what the values of ‘x” and ‘y’ are there’s
one thing for sure, that is distance between ‘0x’ and ‘1y’ is 2 4+ «, where o can be —1, 0
and 1. The actual values of ‘x’ and ‘y’ decide the value of «: if ‘X’ =1, 'y’ =0or X’ =0,
‘y’ =1 (‘0x’ and ‘ly’ are on same-end), o will be 0, and thus the distance is 2; if ‘x’ =1
and ‘y’ =1 (‘Ox’ and ‘ly’ are on far-end), o will be 1, and thus the distance is 3; if ‘x’ =
0O and ‘y’ =0 (‘0Ox’ and ‘1y’ are on near-end), & will be —1, and thus the distance is 1. For
example, distance between ‘01’ and ‘11’ is 3 = 241, where 2 is the basic extended distance
between regions ‘Ox’ and ‘ly’ after the secondary division and the appended distance 1 is
for distance compensation to the “far-end” location relationship; ‘00’ and ‘10’ lie on the
near-end, so their distanceis 1 =2 — 1.

It is evident that only distance between clusters on the same-end of the original 1-
bit regions (such as ‘01’ and ‘10’) needs no adjustment to the basic extended distance
2M (1, xt, yl). In other situations, i.e. clusters lying on different ends (far-end or near-end)
and clusters generated from the same 1-bit region, distance factor 1 must be added to or
subtracted from 2M (1, x1, yl) to get the correct Manhattan distance.

Remember that our goal is to calculate the correct Manhattan distance between two
binary strings with code length ¢ using only O(g) decimal arithmetic, no matter how large ¢
is and how small ¢ is. Our bit storage strategy in Fig. 4 has guaranteed the O (¢) complexity
for distance calculation by considering all the ith bits of different projected dimensions as
a whole. For 2-bit quantization, if we ignore the second bit ‘x” and ‘y’ of each 2-bit binary
code ‘Ox’ and ‘ly’, we can easily get the total Manhattan distance by simply doubling the
1-bit Manhattan distance of the first bits, that is M (2, x,y) = 2M (1, x1, yl). However, ‘x’
and ‘y’ cannot be ignored, so adjustment must be made to each value pair of x and y based
on their location relationship. Since we’ve already known that the “far-end” situation needs
to be appended by 1 and the “near-end” situation needs to subtract 1 from the basic extended
distance, we can count the number a of value pairs that need to do addition adjustment as
well as the number s of subtraction adjustment, and thus M (2, x,y) = 2M (1, x1, y1)+a —s,
because all adjustments is of distance factor 1. Two decimal arithmetic have been used here,
so to achieve our goal of O(q) complexity, a and s must be calculated using only bitwise
operations.

For two input vectors x and y, if the kth value pair is on the same-end, their first bits and
second bits must be different respectively. This is because only two values lie in different
sides of 0; and same sides of 6>; and 6>, (i.e. one lies between 6, and 0, the other is not)
can they be considered to be on “same-end”, which is evident in Fig. 3. Thus we can easily
get (x,i éBy,:) @ (x,% ® y,f) = (x,i @x,%) ® (y,: EBy,%) = 0, where x,’; denotes the kth value of x'.
Therefore, the result of the following formula denotes which codes need to do adjustment
by 1, and thus we can count the number of ‘1’s and add it to 2M (1, x1, yl):

A2 x.y) =x'ex) oG @y 2)

The result of A(2, X, y) is a d-bit-length (d is the number of projected dimensions) binary
string in which the digits with value “1” denotes that its corresponding projected value pair
fall in different ends and need to do adjustment by 1, that is “far-end”, “near-end” or clusters
generated from the same 1-bit region.

Notice that A(2, x,y) denotes the value pairs that need to do adjustment, in which the
“far-end” situation and clusters of the same 1-bit region need to do addition adjustment,

@ Springer



Multimed Tools Appl

while the “near-end” situation requires a subtraction adjustment. It is obvious from Fig. 3b
that only distance between ‘00’ and ‘10’ needs subtraction adjustment. Thus we can get the
following formula, of which the result denotes which codes need to do subtraction by 1:

Sexy=xeyhArleD A1) 3)

where “1” in S(2, X, y) denotes a binary string containing only 1, i.e. OXFFFF if code length
d of X! is 16, and A is the bitwise AND operation.

Therefore, number a of value pairs that need to do addition adjustment is a =
p(A2,x,y)) — p(S(2,x,y)), and the number s of subtraction adjustment is s =
p(S(2,x,y)), where p(x) is the bit-count operation which counts the numbers of 1s in
the binary string x. Summarizing the formulas given above, we get the following 2-bit
accelerated Manhattan distance measurement formula:

M2, x,y) =2M(1,x", y") + p(AQ2, x,y)) — 2p(S(2, X, y)) )

in which M (1, x1, yl) =xl® yl.

In Formula (4), the 2 x a operation can be realized by the efficient bit-shifting operation,
i.e. performing a left shift by 1 bit on a. Thus, there are only 2 decimal operations in the
whole distance measuring process for 2-bit quantization, no matter how long the input codes
are.

For ease of understanding of the 2-bit new Manhattan distance algorithm, we list all pairs
of 2-bit hash codes in Table 1, along with their adjustment factors, subtraction factors and
the 2-bit Manhattan distances. Readers can refer to Table 1 to grasp a deeper understanding
of Formula (4).

4.2 ¢-bit measurement
Given Manhattan distance M (g — 1,X,y) and its corresponding subtraction adjustment
factor S(g — 1,x,y) for (g — 1)-bit quantization, we can easily deduce the measure-

ment M(q, X, y) for g-bit quantization. Firstly, as can be seen from the way we calculate
M(2,x,Yy), it is intuitive that 2M (¢ — 1, x1, yl) is the basic extended distance for two g-

Table 1 The 2-bit Manhattan distance based on our newly proposed encoding rule

01 00 10 11
o1 A=0 M =0 A=1 M =0 A=0 M =1 A=1 M =1
§S=0 M; =0 §=0 M; =1 §=0 M; =2 §$=0 M; =3
00 A=1 My =0 A=0 My =0 A=1 My =1 A=0 My =1
§=0 M; =1 §=0 M; =0 S=1 M; =1 S=0 M; =2
10 A=0 M =1 A=1 M =1 A=0 M =0 A=1 M =0
S=0 M; =2 S=1 M; =1 S=0 M; =0 S=0 M; =1
1 A=1 M =1 A=0 M =1 A=1 M =0 A=0 My =0
S=0 M; =3 §=0 M; =2 §=0 M; =1 §$=0 M; =0

All pairs of 2-bit hash codes are listed, in which ‘A’ denotes the adjustment factor of Formula (2), ‘S’ denotes
the subtraction factor in Formula (3), ‘M, denotes the 1-bit Manhattan distance between x! and y] (the first
bits of 2-bit hash codes), and ‘M’ denotes the 2-bit Manhattan distance in Formula (4)

@ Springer



Multimed Tools Appl

bit quantized binary strings. Specifically, the actual distance between x and y is 2M (¢ —
1,x!, y!) + a — s where a and s denotes respectively the number of value pairs that need
to do addition adjustment and subtraction adjustment, and M (g — 1, x!, y!) calculates the
Manhattan distance between [x!, x2, ..., x971] and [yl, y2 e, yq’l].

Next, we need to deduce the two adjustment factors A(g, X, y) and S(gq, X, y) from their
(g — 1)-bit counterparts. It is easy to induct from the 2-bit encoding method that in g-
bit quantization if the kth pair of values are on same-end, the combined number of ‘1’s
in this two codes shall be an even number, which is provable using mathematical induc-
tion. This statement is already proved to be true when ¢ = 2. When it comes to g-bit
quantization, if the original two (¢ — 1)-bit regions are in the same-end, the gth bits of
the two codes will be the same. This is natural due to our bit-mapping rule. To put it sim-
ply, each (¢ — 2)-bit cluster is divided into four sections and the last bit of each section
is encoded into [1, 0, 0, 1] (see the Algorithm 1). Two (¢ — 1)-bit clusters share the same
last-bit-mapping ([1, 0] or [0, 1]) if they are on the same-end, which makes the combined
‘I’s of the two g-bit codes to be even. On the other hand, if the original two (¢ — 1)-
bit regions are in different ends, the gth bits of the two codes will be different which
also get an even number of ‘1’s. Hence, we can get xor(q, x,l) @ xor(q, yll) = 0 for
the kth pair of values fall in same-end, where xor(q, xl) =xleox?®...®x4. Thus
A(q, x,y) is as follows, of which the result denotes the pairs of codes whose distance need
adjustment:

A(g, x,y) = xor(q,x") ® xor(q, y") 5)

Subtraction factor, however, is not as easy to deduce as the addition factor. With
the increase of quantization number ¢, it’s getting more complex to identify whether
the two input values fall in the near-end or not. Therefore, we propose a recursive-like
(or can be seen as divide-and-conquer) formula to simplify this problem. To be spe-
cific, if x,l @ y,i = 1 denotes that the kth pair of codes are not in the same side of
threshold 61, we can get that xor(q — l,x,%) @ xor(q — 1,1) and xor(qg — 1, y,%) ®
xor(g — 1, 1) are necessary and sufficient conditions for near-end situation, where xor (g —
1,x2) = X2 @ x> @ ... ®xY; far-end, on the other hand, changes the condition to
xor(q, 1) rather than xor(q — 1, 1). This statement is also provable using mathematical
induction.

For start, let’s denote the to-be-compared g-bit value pair as x; and yx. Suppose that
xi lies in left side of threshold 0; and yj in right side, and thus the near-end situation
is equivalent to the situation that x; is the right-hand g-bit cluster of its corresponding
(g — 1)-bit cluster and y; be the left-hand. As we’ve mentioned, each (¢ — 2)-bit cluster
is divided into four sections and the last bit of each section is encoded into [1,0, 0, 1]. If
the (¢ — 1)-bit cluster is the left-hand of its corresponding (¢ — 2)-bit cluster, there will
be xor(q — 2,x,§) @ xor(q — 1,1) = 1 according to our assumption. In this case, the
bit-mapping of this (¢ — 1)-bit cluster is [1, 0], which makes the last bit of x; be 0 and
xor(qg—1, x,%) @ xor(qg—1,1) = 1 hold up. If the (¢ — 1)-bit cluster is the right-hand of its
corresponding (¢ — 2)-bit cluster, there will be xor (g — 2, x]%) ® xor(qg —2,1) = 1. With
the [0, 1] bit-mapping, the last bit 1 also makes xor(g — 1, x,%) @®xor(qg—1,1) = 1hold up.
The similar statement of y; can be proved accordingly. Therefore, if x; and yi is “near” to
each other, we’ll have [xor (g — 1, x%) @ xor(g — 1, D1 A[xor(q — 1, y2) ®xor(qg — 1, D]

@ Springer



Multimed Tools Appl

On the other hand, if x,i ® y,i = 0, namely they fall in the same side of threshold 6,
by abandoning the first bits x,l and y,} we reduce this problem to (¢ — 1)-bit quantization.
Summarizing all the explanations given above , we get the following formula which
recursively calculates the pairs of codes whose distance need subjection adjustment:

S@.x.y) = [ &y A Gror( — 1,x) @ xor(g — 1. 1)
Axor(q — 1,¥%) @ xor(q — 1, 1))]

V[~ ey AS@ - 13y ©)

where A is the bitwise AND operation, Vv denotes the bitwise OR operation and — denotes
the bitwise NOT operation.
Finally, the measurement of Manhattan distance is as follows:

M(q.x.y) =2M(q — 1.x",y") + p(A(g.x.y)) = 2p(5(q.X. ¥)) @)

The advantages of our encoding method is that there’s no need to break the compactly stored
hash strings into g-bit quantized codes to get its corresponding decimal values; the ith bit
of all dimensions can be seen and calculated as a whole. It is evident from Formula (5)
and Formula (6) that A(q, X, y) and S(g, X, y) consist only bitwise operations. Therefore,
with 2 x realized by left bit-shifting operation, the number of decimal operations is linear to
quantization number ¢ rather than code length c. Generally we have ¢ > ¢, so our proposed
method runs much faster than the original Manhattan hashing.

Algorithm 2, 3 and 4 are respectively the formal measurement algorithms for the cal-
culating of accelerated Manhattan distance, adjustment factor and subtraction adjustment
factor.

Algorithm 2 M(q, x,y): Manhattan distance measurement of accelerated Manhattan
hashing

Input:
The quantization factor g;

Two binary strings x = [x!, x2,...,x4] and y= [yl,yz,...,yq], in which xi =

[/ xd i)

Output:
The Manhattan distance M between x and y.

b Myg_1 =M(g —1,x",y);
/] M(g —1, x!, yl) calculates the Manhattan distance between [x1, x2, ..., x971] and
Iy y% oy

2: A = A(q,x,Yy); // The adjustment factor in Algorithm 3.

3: S = S(q,x,Yy); // The subtraction adjustment factor in Algorithm 4.

4 M =M, 1 << 1+ popcnt(A) — popcnt(S) << 1;
// popcnt(A) counts the number of 1s in binary string A, and << denotes the left
bit-shifting operation in programming languages.

@ Springer



Multimed Tools Appl

Algorithm 3 A(g,x,y): the adjustment factor of accelerated Manhattan distance
measurement

Input:
The quantization factor g;
Two binary strings x = [x',x*,...,x9 and y = [y',y%, ..., y9], in which xi =
[xf,x%,...,xé].

Output:
The adjustment factor A between x and y.

1: A=xor(q,x") ®xor(q, yl);
/) xor(g. x" ) =x'®x*®...HxI

Algorithm 4 S(g, x, y): the subtraction adjustment factor of accelerated Manhattan distance
measurement

Input:
The quantization factor g;

Two binary strings x = x!,x%,...,x9] and y = [yl,yz, ..., ¥4, in which X =
JoJ J
X5 X0 ey X |

Output:
The subtraction adjustment factor S between x and y.

1: bitlyy =x' & yl; // Decide whether each pair are on the same side of threshold 6 in
Fig. 3.

20 Sy = bitlyg A(xor(g—1,x})@xor(g—1, D) A(xor(g—1,y*)dxor(g—1,1)); // The
near-end determination if each comparing pair are not on the same side of 9.
//xor(g—1,x0)=x*0x°®...®x4

30 Sy—1 = =bitlyor AS(g—1, X2, y2); // If the pair is on the same side then this problem
is reduced to (¢ — 1)-bit.

4 S=8,VS_1;

5 Experiment
5.1 Data sets

To evaluate the efficiency of our accelerated Manhattan distance measure method, we
use three publicly available datasets, i.e. ANN_SIFT1m [10-12], ANN_GIST1m [12] and
Tiny580K [7].

All datasets we use are widely popular image datasets, each has different charac-
teristics, image sizes and resolutions, along with variable capacities. ANN_SIFT1m and
ANN_GIST1m [12] both contain 1M feature vectors, but the dimension of the former is
128 while that of the latter is 960. Tiny580K [7] consists of 580K 320-dimensional GIST
descriptors of Tiny Images (whose resolution is 32 x 32 pixels).

5.2 Baselines
Accelerated Manhattan hashing can be used with any projection functions to compose a

complete hashing method. In this paper, we choose representative projection functions,
namely LSH [1, 6], PCA-Hash [7, 13], SH [29] and ITQ [7]. Detailed introduction of these

@ Springer



Multimed Tools Appl

Table 2 Computational Cost of ANN retrieval on ANN_SIFT 1 m dataset with time measured in seconds

qg=2 qg=3 qg=2 g=4
AMH MH AMH MH AMH MH AMH MH
c=16 c=32
LSH 7.7 37.2 - - 10.1 76.5 27.9 43.1
PCA 8.3 39.1 - - 9.5 76.2 29.7 44.7
SH 8.8 37.6 - - 9.3 75.7 29.3 44.0
1TQ 8.7 37.3 - - 9.7 71.3 27.8 39.7
c =48 c=064
LSH 19.5 114.9 13.1 79.7 8.4 160.5 27.8 91.0
PCA 20.0 121.9 12.3 81.0 8.5 167.8 28.1 95.3
SH 18.6 116.91 12.7 81.3 7.7 164.4 28.5 92.0
1TQ 19.7 113.6 12.6 72.7 8.4 155.6 26.0 84.6
c=96 c=128
LSH 20.4 253.7 14.5 161.2 11.1 348.3 20.5 187.4
PCA 20.1 256.9 14.0 165.1 10.6 349.2 22.0 196.6
SH 20.3 257.3 14.4 168.0 10.9 344.3 21.0 195.5
1TQ 20.6 257.3 13.4 153.1 11.6 348.1 19.1 178.2

four projection functions can be found in Section 2.1. For quantization stage, the origi-
nal Manhattan hashing [15] is the baseline for efficiency comparisons. Therefore, we can
get different variants of a specific hashing method by combining one of the four projec-
tion functions (LSH, PCA-Hash, SH and ITQ) with one quantization method (the original
Manhattan hashing or the proposed accelerated Manhattan hashing). For example, “PCA-
MH?” denotes the combination of PCA projection with Manhattan hashing quantization, and
“ITQ-AMH” denotes one variant of ITQ projection combined with accelerated Manhattan
hashing quantization.

For all the baseline functions we refer to, we use the source codes as well as parameters
provided by the authors, and all experiments are conducted on our workstation with Intel(R)
Xeon(R) CPU of 2.40 GHz and 48G memory. We use Matlab2014a to do the encoding work.
The experiments to evaluate retrieval efficiency are conducted using C++ applications in
which bit operations can be realized by directly invoking the built-in functions, such as
__popcnt, __popcnt16 and __popcnt64 for bit-count operation.2

5.3 Results

For all experiments, 1000 points are randomly selected to be queries, and the rest are left
to be the retrieval set on which the queries are performed. We also select 10,000 points
randomly from the database to form the training set on which the projection functions and
thresholds are learned. As mentioned, we train the four projection functions using their
source codes and default parameter settings, and we learn all the thresholds in Fig. 3 to

2Codes are provided on http://ise.thss.tsinghua.edu.cn/MIG/resources.jsp

@ Springer


http://ise.thss.tsinghua.edu.cn/MIG/resources.jsp

Multimed Tools Appl

Table 3 Computational Cost of ANN retrieval on ANN_GIST1m dataset with time measured in seconds

q=2 q=3 q=2 qg=4
AMH MH AMH MH AMH MH AMH MH
c=16 c=32
LSH 6.9 36.4 - - 8.6 68.4 29.2 44.5
PCA 6.5 35.8 - - 8.0 71.0 27.6 452
SH 7.2 35.0 - - 8.9 70.4 31.7 45.0
1TQ 6.4 35.5 - - 8.7 70.6 28.1 423
c=48 c=64
LSH 19.3 112.4 12.5 77.9 7.0 154.3 26.8 89.8
PCA 19.3 112.8 134 81.7 7.6 156.2 27.6 94.4
SH 19.2 115.1 13.2 82.0 7.1 158.7 30.1 95.2
1TQ 18.6 105.9 13.2 76.4 7.5 149.7 27.8 83.8
c=96 c=128
LSH 20.2 239.8 144 164.7 8.6 3314 20.0 186.1
PCA 20.5 236.8 15.0 172.5 8.6 3229 20.7 186.7
SH 18.8 237.9 14.2 166.1 8.8 324.9 21.8 189.7
1TQ 19.7 246.5 13.5 166.0 9.5 330.9 19.3 177.9
c=192 c =256
LSH 18.9 492.4 13.6 350.8 11.3 677.6 204 397.0
PCA 19.5 512.5 14.7 348.5 114 665.6 204 395.7
SH 19.6 499.9 14.4 346.7 10.7 677.1 20.6 393.2
1TQ 20.2 497.8 13.4 345.3 11.2 657.0 23.6 395.8
c =384 c=512
LSH 20.3 1013.9 30.7 733.8 24.7 1341.6 53.7 794.5
PCA 20.0 1010.3 30.6 770.5 25.7 1346.3 51.1 780.6
SH 19.9 1004.2 33.2 747.4 23.3 1357.5 53.5 790.9
1TQ 214 1010.0 28.1 718.9 24.9 1364.4 51.7 830.7

cluster projected values using k-means algorithm as proposed in [15]. All the experiments
reported in this paper are averaged over 10 random training/test partitions.

For the validation of effectiveness, we do queries using both Manhattan hashing and
accelerated Manhattan hashing and compare their result to make sure that our method calcu-
lates Manhattan distance correctly. Meanwhile, we record their query timecost respectively
to evaluate the efficiency of our method.

Tables 2, 3 and 4 respectively show the Computational Cost of ANN retrieval exper-
iments on the three datasets using Manhattan distance measurement and accelerated
Manhattan distance combined with four basic hashing methods we choose. Each result
shows the query costs of one of the four projection functions combined with one quanti-
zation method, i.e. Manhattan hashing (MH) or accelerated Manhattan hashing (AMH), on
one setting of ¢ and g. Evidently, AMH outperforms MH in all conditions, demonstrating
that our proposed encoding method and distance measurement achieves great improvement

@ Springer



Multimed Tools Appl

Table 4 Computational Cost of ANN retrieval on Tiny580K dataset with time measured in seconds

q=2 q=3 q=2 qg=4
AMH MH AMH MH AMH MH AMH MH
c=16 c=32
LSH 44 20.9 - - 5.3 41.2 17.3 26.0
PCA 4.0 20.8 - - 53 415 16.9 26.8
SH 4.2 21.7 - - 53 41.5 17.0 26.1
1TQ 4.2 20.3 - - 52 40.2 16.3 24.8
c=43 c=64
LSH 10.8 64.7 7.6 45.1 4.6 92.7 16.9 55.4
PCA 11.7 67.0 7.4 473 4.7 90.2 16.7 53.7
SH 11.0 63.9 7.3 45.3 4.8 92.0 16.5 54.8
1TQ 11.2 63.1 7.2 443 43 89.9 16.5 52.1
c=96 c=128
LSH 11.0 142.9 8.1 95.2 55 193.5 12.3 111.3
PCA 10.6 140.3 8.2 93.4 5.0 188.7 124 109.4
SH 11.0 141.6 7.9 94.2 5.6 190.2 12.7 114.6
1TQ 11.0 142.7 8.0 91.0 5.0 193.6 12.6 110.3
c=192 c =256
LSH 11.2 2954 8.5 202.5 6.7 386.8 12.8 230.8
PCA 11.7 294.6 8.0 203.0 6.8 390.8 12.5 226.6
SH 11.3 287.6 8.0 201.2 7.0 389.3 13.3 233.5
1TQ 12.3 294.9 8.1 195.5 6.7 388.2 12.8 229.2

on query efficiency by making full use of bitwise operations. For example, when query-
ing on ANN_GIST1m dataset with code length ¢ = 256 and quantization number ¢ = 2,
AMH is 50 times faster than MH; querying on Tiny580K with ¢ = 192 and ¢ = 3 using
AMH is at least 20 time faster than using MH. Furthermore, as can be seen from Formula
(1) and Formula (7), for calculating distance between two g-bit quantized hash codes with
code length ¢, Manhattan hashing does “+” operation at least (2d — 1) times, with d being
the number of projected dimensions, while our method performs only 2¢q times. That is to
say, the query complexity of Manhattan hashing is O (d), while for accelerated Manhattan
hashing it is O(q). Generally, g is much smaller than d, for ¢ is usually set to be 2, 3 or
4, while d’s value grows with code length ¢ (c is usually set to be 64, 128, 256 or more).
Hence, with code length getting longer, the running time of Manhattan hashing is climbing
linearly, while there is no additional cost for our method, which illustrates the advantage of
using bitwise operations over decimal arithmetic.

To test the necessity and capability of further expanding the quantization number ¢
into larger values, i.e. g-bit quantization with ¢ > 4, we make some extra experiments
on ANN_GIST1m dataset and Tiny580K dataset. For the evaluation of effectiveness, we
directly use the mean average precision (mAP) metric as defined in [15]. The hash code
length is set to be a certain fixed value as we gradually enlarge the quantization number, and
mAP and Computational Cost are recorded accordingly. As can be seen in Figs. 6 and 7, the
query time of Manhattan hashing is decreasing with ¢ getting larger, because the number of

@ Springer



Multimed Tools Appl

mAP with code length 256 Computational Cost with code length 256
1 700
-6 ITQ-MH
©-ITQ-AMH —%—ITQ-AMH
-=-LSH-AMH 600 —5-LSH-MH
0.8 —PCA-AMH ——LSH-AMH
——SH-AMH 500 ~—PCA-MH
—+—PCA-AMH
0. % 400 -7~ SH-MH
Y (b/e\o 5 —%—SH-AVH
E £ 300
OAF)\E\Q -
I 200 y
0.2
100 /»
% 4 8 % 4 8
quantization number quantization number
mAP with code length 384 Computational Cost with code length 384
1 1400
-5~ ITQ-AMH —o—ITQ-MH
—&-LSH-AMH 1200 —%— |TQ-AMH
0.8 —¢ PCA-AVH - 'I:z::mH
—— SH-AMH 10004 o PCA MM
}/e\e\é —+— PCA-AMH
0§ D 5 800 ~7— SH-MH
< 0 T —#— SH-AMH
£ £ 600
0.4 0
Vo e 400
0.2
200
0,
2 3 4 6 2 3 4 6
quantization number quantization number
mAP with code length 512 Computational Cost with code length 512
1 1600
5 Ta-AWH —6— ITQ-MH
—5-LSH-AMH 1401 —%—|TQ-AMH
08 —%— PCA-AMH —E—LSH-MH
’ —— SH-AMH 1200 —— LSH-AMH
—6—PCA-MH
O’/’e\o 1000 —+— PCA-AMH
0.6 D ——SH-MH
o EJ\E\ T 800 —#— SH-AMH
£ £
0.4 1 600 )
L 400
0.2
200
/i
G2 4 8 2 4 8
quantization number quantization number

Fig. 6 MAP and Computational Cost curves on ANN_GISTIm with fixed code length and varying
quantization number

decimal arithmetic is linear to d, which is ¢/q where c is the fixed code length. However, as
we’ve mentioned before, the query time of accelerated Manhattan Hashing is linear to g (the
number of bits for coding each component of a vector), so with g increasing the computa-
tional cost of accelerated Manhattan hashing climbs slightly. But as can be seen in Figs. 6,
7 and [15], it is not necessarily good to have a large quantization number. For most cases,
the best mAPs of ITQ-AMH and LSH-AMH are achieved when quantization number is 3 or
4, and their curves show a downward trend with ¢ getting larger. Although PCA-AMH and
SH-AMH share a climbing trend in both datasets, it is too subtle to make a difference, and

@ Springer



Multimed Tools Appl

mAP with code length 96 Computational Cost with code length 96
1 300
-©-ITQ-AMH ~©-ITQ-MH
-E-LSH-AMH 250 ——ITQ-AMH
08 -<PCA-AMH —&-LSH-MH
——SH-AMH ——LSH-AMH
200 ~-PCA-MH
N 0.6 @ —+—PCA-AMH
< g 150 - SH-MH
o.b/e\é) = ——SH-AMH
100
o =
S —— ,
i ? /*
% 3 6 % 3 6
quantization number quantization number
mAP with code length 192 Computational Cost with code length 192
1 400
——ITQ-MH
o Lorrea %0 -
0.8 —<-PCA-AMH 300 —— LSH-AMH
——SH-AMH 9 —o—PCA-MH
250 —+— PCA-AMH
0.6 = —7— SH-MH
& ¢ D gzoo —#— SH-AMH
£ £

0.4 150 \
lﬂ 100
0.2

50

'§/*
G2 3 6 02 3 6
quantization number quantization number
mAP with code length 256 Computational Cost with code length 256
4
- ITQ-AMH
-=-LSH-AMH
0.8 - PCA-AMH
——SH-AMH

0.4::
j
02

4 4
quantization number quantization number

Fig. 7 mAP and Computational Cost curves on Tiny580K with fixed code length and varying quantization
number

their performances are far worse than ITQ-AMH. What’s more, with fixed code length ¢
and enlarging quantization number ¢, the number of projected dimensions ¢/q is lowering,
causing more information loss after the projection stage. According to [15], ¢ = 2 (2-bit
quantization) achieves the best performance for most cases, which makes our method very
competitive.

For further reference, the evaluation of effectiveness of our method is also posted here in
Fig. 8, in which Manhattan hashing is denoted by hollow signs and accelerated Manhattan
hashing marked by solid ones. It is evident from Fig. 8 that MH and AMH get the exact same
results when it comes to query precision. AMH adopts the idea of multi-bit quantization in
MH, but we improve it with our newly proposed encoding method in Section 3 and distance

@ Springer



Multimed Tools Appl

mAP of ITQ on ANN-SIFT1m

-e-SBQ
--2-bit MH
——2-bit AMH
—©-3-bit MH
——3-bit AMH
4-bit MH
4-bit AMH

mAP

16 32 48 64 96
code length

mMAP of ITQ on ANN-GIST1m

128

1
--SBQ
-©-2-bit MH
——2-bit AMH
—©-3-bit MH
——3-bit AMH
4-bit MH
4-bit AMH

mAP

qe 32 48 64 96 128 192 256 384 512
code length

mAP of ITQ on Tiny580K

-6-SBQ

-6~ 2-bit MH

—»—2-bit AMH

-e-3-bit MH

—»—3-bit AMH .
4-bit MH ) D

0.8

0.6

mAP

4-bit AMH

16 32 48 64 96
code length

128 192 256

mAP

mAP

mAP

mAP of PCA on ANN-SIFT1m

-6-SBQ
-6-2-bit MH
—2-bit AMH
—-6-3-bit MH
——3-bit AMH
4-bit MH
4-bit AMH

0.8

0.6

0.4

0.2

6 32 48 64 96
code length

mAP of PCA on ANN-GIST1m

-6-SBQ
-6-2-bit MH
—2-bit AMH
—-6-3-bit MH
——3-bit AMH
4-bit MH
4-bit AMH

128

0.8

0.6

0.4

0.2

6 32 48 64 96 128 192 256 384 512
code length

mAP of PCA on Tiny580K

-©-SBQ
-6-2-bit MH
——2-bit AMH
—--3-bit MH
—»—3-bit AMH
4-bit MH
4-bit AMH

6 32 48 64 96
code length

128 192 256

Fig. 8 mAP curves on ANN_SIFT1m, ANN_GISTIm and Tiny580K datasets

measure algorithm in Section 4, in order to get the correct Manhattan distance measurement
proposed in [15] using faster bitwise operations to improve query efficiency. To demon-
strate the efficiency of our method, we directly adopt the k-means cluster algorithm to learn
the thresholds when encoding. Therefore, query results of these two quantization methods
are supposed to be the same. Since accelerated Manhattan hashing precisely reproduces
the experimental results of Manhattan hashing in terms of query precision, the multi-bit
quantization methods outperforms SBQ significantly just as what was reported in [15].

@ Springer



Multimed Tools Appl

When it comes to real applications, the relevant input parameters ¢ and g can be adjusted
according to the real-world cases and user demands. Take ANN_GIST1m dataset for exam-
ple, it is ITQ-AMH with 4-bit quantization and code length ¢ = 512 that achieves the best
mAP, and in this case accelerated Manhattan hashing runs at least 15 times faster than Man-
hattan hashing. The mAP of ITQ-AMH with 3-bit quantization and the code length being
384 is slightly worse, but this 1 % query precision sacrifice helps us save at least a quarter of
the query time comparing to accelerated Manhattan hashing with ¢ = 4 and ¢ = 512, further
widening the computational gap between Manhattan hashing and accelerated Manhattan
hashing. Hence we can choose the quantization number g and code length c¢ flexibly.

6 Conclusion

Manhattan hashing is a hashing quantization solution which fixes the quantization loss
caused by traditional SBQ, but it uses time-consuming decimal operations to calculate dis-
tances instead of bitwise operations so that it loses the advantage of efficiency. In this paper,
we propose an accelerated version of Manhattan hashing by making full use of bitwise
operations via bit-remapping. It does the encoding work in a way that is different from the
original Manhattan hashing. Based on this, a novel hash code distance measurement that
optimizes the calculation of Manhattan distance is proposed to improve query efficiency sig-
nificantly without any precision loss. Experiments on three benchmark datasets showed that
our approach improves the speed of data querying on 2-bit, 3-bit as well as 4-bit quantization
by at least one order of magnitude on average without any precision loss.

Acknowledgments This research was supported by the National Natural Science Foundation of China
(Grant No.61271394 and 61571269). The authors would like to thank the anonymous reviewers for their
valuable comments.

References

1. Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. In: Communications of the ACM - 50th anniversary issue: 1958-2008, vol 51

2. Baluja S, Covell M (2008) Learning to hash: forgiving hash functions and applications. Data Min Knowl
Disc 17(3)

3. Cheng W, Jin X, Sun J-T, Lin X, Zhang X, Wang W (2014) Searching dimension incomplete databases.
Knowl Data Eng 26(3)

4. Ding G, Guo Y, Zhou J (2014) Collective matrix factorization hashing for multimodal data. In: Computer
vision and pattern recognition

5. Friedman JH, Bentley JL, Finkel RA (1977) An algorithm for finding best matches in logarithmic
expected time. ACM Trans Math Softw 3(3)

6. Gionis A, Indyk P, Motwani R et al. (1999) Similarity search in high dimensions via hashing. In: Very
large data bases, vol 99

7. Gong Y, Lazebnik S (2011) Iterative quantization: a procrustean approach to learning binary codes. In:
Computer vision and pattern recognition

8. Guttman A (1984) R-trees: a dynamic index structure for spatial searching 14(2)

9. Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimension-
ality. In: Proceedings of the 13th annual ACM symposium on theory of computing

10. Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large
scale image search. In: European conference on computer vision
11. Jégou H, Douze M, Schmid C (2010) Improving bag-of-features for large scale image search. Int J

Comput Vis 87(3)

@ Springer



Multimed Tools Appl

13.
14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

. Jegou H, Douze M, Schmid C (2011) Product quantization for nearest neighbor search. Pattern Analysis

and Machine Intelligence 33(1)

Jolliffe I (2002) Principal component analysis

Kong W, Li W-J (2012) Double-bit quantization for hashing. In: Association for the advancement of
artificial intelligence

Kong W, Li W-J, Guo M (2012) Manhattan hashing for large-scale image retrieval. In: ACM special
interest group on information retrieval

Lee Y, Heo J-P, Yoon S-E (2014) Quadra-embedding: binary code embedding with low quantization
error. Comput Vis Image Underst 125

. Lin Z, Ding G, Hu M (2014) Image auto-annotation via tag-dependent random search over range-

constrained visual neighbours. Multimedia tools and applications

. Lin Z, Ding G, Hu M, Wang J (2015) Semantics-preserving hashing for cross-view retrieval. In:

Computer vision and pattern recognition

. Liu W, Wang J, Kumar S, Chang S-F (2011) Hashing with graphs. In: Proceedings of the 28th

international conference on machine learning

Moran S, Lavrenko V, Osborne M (2013) Neighbourhood preserving quantisation for Ish. In: Proceed-
ings of the 36th international ACM SIGIR conference on research and development in information
retrieval

Moran S, Lavrenko V, Osborne M (2013) Variable bit quantisation for Ish. In: Association for
computational linguistics

Mu Y, Shen J, Yan S (2010) Weakly-supervised hashing in kernel space. In: Computer vision and pattern
recognition

Norouzi M, Blei DM (201 1) Minimal loss hashing for compact binary codes. In: International conference
on machine learning

Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In:
Advances in neural information processing systems

Song J, Yang Y, Huang Z, Shen HT, Hong R (2011) Multiple feature hashing for real-time large scale
near-duplicate video retrieval. In: Proceedings of the 19th ACM international conference on multimedia
Uhlmann JK (1991) Satisfying general proximity/similarity queries with metric trees. Inf Process Lett
40(4)

Wang J, Kumar S, Chang SF (2010) Semi-supervised hashing for scalable image retrieval. In: Computer
vision and pattern recognition

Wang X, Jin X, Chen M-E, Zhang K, Shen D (2012) Topic mining over asynchronous text sequences.
Knowl Data Eng 24(1)

Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Advances in neural information processing
systems

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1)

Yu Z, Wu F, Yang Y, Tian Q, Luo J, Zhuang Y (2014) Discriminative coupled dictionary hashing for
fast cross-media retrieval. In: Proceedings of the 37th international ACM SIGIR conference on research
and development in information retrieval

Zhou J, Ding G, Guo Y (2014) Latent semantic sparse hashing for cross-modal similarity search. In: Pro-
ceedings of the 37th international ACM SIGIR conference on research and development in information
retrieval

Zhu X, Huang Z, Cheng H, Cui J, Shen HT (2013) Sparse hashing for fast multimedia search. ACM
Trans Inf Syst 31(2)

Zhu X, Huang Z, Shen HT, Zhao X (2013) Linear cross-modal hashing for efficient multimedia search.
In: Proceedings of the 21st ACM international conference on multimedia

Zhu X, Zhang L, Huang Z (2014) A sparse embedding and least variance encoding approach to hashing.
Image Processing 23(9)

@ Springer



Multimed Tools Appl

A :

Wenshuo Chen received her B.Sc. degree from School of Software, Nanjing University, Jiangsu, China
in 2013, and currently is a M.D. candidate in School of Software in Tsinghua University, Beijing, China.
Her research interests include multimedia information retrieval, human action recognition and video event
detection.

Guiguang Ding received his Ph.D degree in electronic engineering from the University of Xidian. He is cur-
rently an associate professor of School of Software, Tsinghua University. Before joining School of Software
in 2006, he worked as a postdoctoral researcher in Automation Department of Tsinghua University. His cur-
rent research centers on the area of multimedia information retrieval and mining, in particular, visual object
classification, automatic semantic annotation, content-based multimedia indexing, and personal recommen-
dation. He has published about 40 research papers in international conferences and journals and applied for
18 Patent Rights in China.

@ Springer



Multimed Tools Appl

Zijia Lin received his B.Sc. degree from School of Software, Tsinghua University, Beijing, China in 2011,
and currently is a Ph.D. candidate in Department of Computer Science and Technology in the same campus.
His research interests include multimedia information retrieval and machine learning.

Jisheng Pei received the B.E. degree in computer software from Tsinghua University in 2011. He is cur-
rently working toward the Ph.D. degree in the Department of Computer Science and Technology at Tsinghua
university. His research interests include data provenance and business process management.

@ Springer



	Accelerated Manhattan hashing via bit-remapping with location information
	Abstract
	Introduction
	Previous work
	Projection stage
	Quantization stage

	Encoding method for accelerated Manhattan hashing
	2-bit quantization
	q-bit quantization

	Accelerated Manhattan distance measurement
	2-bit quantization measurement
	q-bit measurement

	Experiment
	Data sets
	Baselines
	Results

	Conclusion
	Acknowledgments
	References




